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Abstract

In recent years, technological innovations and changes in financial regulation in-

duced a new set of liquidity providers to arise on financial markets: high-frequency

traders (HFTs). HFTs differ most notably from traditional market participants

in the fact that they combine speed and information processing. We compare a

setting with HFTs to settings with traders that only have speed technology or only

information processing technology available. Speed technology by itself will only

be adopted when socially efficient. Information processing technology by itself will

only generate mild inefficiencies due to a lemons problem. The combination of the

two, however, can lead to the implementation of inefficient speed technology or

the amplification of the lemons problem. In the latter case, liquidity evaporates

when it is most needed and markets can freeze altogether for periods of time. We

also discuss how regulation can prevent such sudden drops of liquidity and how

the market may recover after a freeze.
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1 Introduction

In recent years, technological innovations and changes in financial regulation (e.g. Regu-

lation NMS in the United States and MiFiD in Europe) have induced trading to become

more automated. This development has drastically altered the nature of liquidity provi-

sion on financial markets. More specifically, traditional intermediaries have been com-

plemented or even replaced by a new set of liquidity providers: high-frequency traders

(HFTs). HFTs invest heavily in trading technology allowing them to benefit from a

combination of low-latency access to the financial market (i.e., “speed”) and superior

information processing.1 In particular, they use automated algorithms to scan (order

book) information at an extremely fast rate and instantly form trading decisions.2 Co-

location near the market server assures these decisions are transferred to the market

in microseconds. In order to exploit their speed advantage as much as possible, HFTs

compete for low latency amongst each other (e.g. for an optimal co-location near the

market server). In parallel, trading venues have been very active in setting up policies to

attract HFTs (e.g. through offering beneficial pricing policies, co-location opportunities

or privileged information access mechanisms) in order to increase turnover.

Meanwhile, the massive participation of these new “middlemen” in trades across

the globe spurred an intense public debate on the desirability of HFTs. This debate

was fueled further by the May 2010 “flash crash” which featured an unprecedented

vicious liquidity spiral causing US equity markets to instantly dry up and the major

index to temporarily decrease by more than 9% (corresponding to $1 trillion in market

value evaporating).3 In recent years, markets allegedly have become more susceptible

to technology-related incidents. Especially the increasing incidence rate of “mini flash

crashes” has been linked by many market observers to the emergence of HFTs.4 Hence,

1Latency refers to the total reaction time to a change in the state of the market, and can be
decomposed into the time needed to acquire, process, and trade upon upon new information (see e.g.
Hasbrouck and Saar (2012)).

2They exploit e.g. short-lived information on order book dynamics, trade dynamics, past stock
returns, cross stock correlations, cross asset correlations and cross exchange information delays. See
Brogaard (2011a) for a further discussion of the different types of short term information used by
HFTs. Dugast and Foucault (2013) provide an analysis of the trade-off between speed and accuracy in
information-processing.

3Although HFTs did not trigger the flash crash, their highly-correlated responses to an initial shock
contributed considerably to the severity of the drop. Furthermore, HFTs did not lose money during
this crash, but in fact seem to have made more profits than on previous days. In contrast, traditional
intermediaries (i.e., market makers, pension funds and mutual funds) incurred significant losses (Kir-
ilenko, Kyle, Samadi and Tuzun, 2011). See CFTC-SEC (2010), Menkveld and Yueshen (2011), and
Easley, Lopèz de Prado and O’Hara (2012) for further in-depth analyses of the flash crash.

4Mini flash crashes are abrupt and severe price changes that occur in an extremely short period.
Recently-reported examples include the shares of Google on 4/22/2013 (Russolillo, 2013), of Symantec
on 4/30/2013 (Vlastelica, 2013) and of Anadarko on 5/17/2013 (Nanex, 2013). Another notable example
is the BATS IPO on 3/23/2012 (Beucke, 2012). See Brogaard, , Moyaert and Riordan (2014), Dugast
and Foucault (2013), Golub, Keane and Poon (2012) and Johnson et al. (2012) for analyses on the
linkage between HFT and mini flash crashes.
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policy makers and regulators have become increasingly concerned that HFT-based liq-

uidity provision could come at the expense of an evaporation of liquidity when it is most

needed (see e.g. CFTC-SEC (2010) and Niederauer (2012)).5

This paper addresses exactly this concern. As such, it analyzes whether or not

HFTs (i) can destabilize financial markets, (ii) contribute to efficiently financing the

economy in the long run, and (iii) should be regulated (and if so how). To do so,

we construct a novel model of HFT liquidity provision in which potentially informed

order flow arrives to a limit order market.6 Initially, liquidity in this market is provided

by a homogeneous set of relatively slow liquidity providers (i.e., low-frequency traders,

or LFTs), such as traditional market makers or institutional investors. In line with

reality, we then give traders the option to become technologically more advanced by

investing upfront in speed and/or superior information processing technology (as e.g.

documented in Korajczyk and Murphy (2015)). Nowadays, the simultaneous investment

in both technological advances (which is the setup closest to real-life HFTs) generates

synergy benefits for the HFTs which are unprecedented. Historically, such benefits have

been much smaller or even non-existent.7

To show the significance and the impact of these synergy benefits, we proceed along

the following three steps. We first give traders the option to invest in speed technology

only which allows to monitor the market at a lower cost. We demonstrate that if this

technology is most efficient8, the fast liquidity providers take over the whole market,

while nobody adopts the new technology if it is too expensive. In a second step, we

assume that instead of speed technology, only superior information processing technology

is available. This technology allows its users to spot the typical indications of order flow

stemming from better-informed traders (e.g. informed trade clustering as documented in

Admati and Pfleiderer (1988)) better and faster. These users can use this information to

5As a further example of the increased regulatory scrutiny regarding HFTs, the European Commis-
sion has included the analysis of HFTs in its review of MiFID. In order to prevent systemic risk created
by HFTs, it considers the possibility to subject them to regulatory oversight and capital requirements.
In a recent report, the European Securities and Market Authority explicitly sollicits further research
regarding the potential risks and benefits linked to HFT activity (ESMA (2014)).

6Our focus on HFT liquidity provision is supported by Kirilenko, Kyle, Samadi and Tuzun (2010)
who find that 78% of the HFT orders in their sample (trades in the E-mini futures S&P500) are limit
orders. Jovanovic and Menkveld (2011) find that the HFT they are focusing on is on the passive side of
the transaction in about 78% (respectively 74%) of the transactions on which it is involved on Chi-X
(respectively Euronext).

7Consider the NYSE specialist from the past as an example. If anything, analyzing data from several
sources would slow down rather than speed up his market making operations. For a liquidity-providing
HFT, hardware upgrades offer computing power, memory and low latency that are useful for both
information processing as well as fast order routing (e.g. multi-core processing). Co-location would
again yield benefits for both speedy order routing as well as superior (in this case earlier) information
processing. Moreover, modern day IT infrastructure allows for unprecedented communication speeds
between the information processing and trading functions of the system.

8With “most efficient” we mean that the ratio of speed over technology cost is more favorable for
advanced traders than for LFTs.
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avoid providing liquidity to incoming informed order flow9, which will then end up with

the non-users. As such, LFTs bear disproportionally large adverse selection losses when

providing liquidity to “toxic order flow”.10 As compared to the first setting, we find that

some traders will indeed invest in this technology. Interestingly though, not all LFTs

will do so in equilibrium. The reason is that if too many traders adopt this technology,

LFTs will completely leave the market. As a result, there will be no liquidity demanders

to absorb informed order flow and costly market freezes would arise. These freezes

would prevent informationally advanced traders from realizing informed trading profits.

Therefore, the adoption rate of such technology is limited such that freezes do not occur

in equilibrium. As a third step, we explore a setting in which traders can opt to invest

in technology that combines speed and information superiority. The overall effect of this

setting depends on whether speed technology is efficient or not. If speed technology

is inefficient, synergy benefits between speed and information technology increase the

adoption likelihood as profits from informational superiority may cross-subsidize the

high speed costs. In this case, market freezes do not occur for the same reason as

indicated in the second step. However, if speed technology is efficient, the gains from

speed superiority may create an allowance for the costs resulting from market freezes.

The resulting main insights can be summarized as follows. First, allowing LFTs to

invest in speed technology only yields efficient outcomes: if the technology is too expen-

sive, it will not be adopted and vice versa. Second, providing LFTs the option to invest

in information processing technology may trigger information asymmetry problems. Yet,

the severeness of these problems is limited as market freezes cannot materialize. Third,

if LFTs are allowed to purchase speed and information processing technology simulta-

neously (i.e., become HFTs), the overall impact hinges on the efficiency (i.e., the cost

per unit of speed improvement) of the speed technology. If speed technology is ineffi-

cient, cross-subsidization from informational gains can nonetheless lead to its adoption.

Market freezes in this case do not materialize. If, in turn, speed technology is efficient

enough, adoption rates can grow so large that costly and inefficient market freezes can

occur in equilibrium.

Korajczyk and Murphy (2015) provide empirical evidence that in normal times, HFTs

take on the bulk of liquidity provision. Yet, in stressful periods, HFTs reduce their liquid-

ity provision significantly, while the liquidity provision of designated market makers (i.e.,

LFTs) remains mostly unchanged.11 Our model fully corroborates with their results, and

9As such, they are able to mitigate their exposure to the risk of being picked off (Copeland and
Galai (1983)). This effect is also documented for liquidity-providing HFTs in Aı̈t-Sahalia and Saglam
(2013), Hoffman (2014), and Jovanovic and Menkveld (2011).

10See also Biais, Declerck and Moinas (2014), Easley, Lopèz de Prado and O’Hara (2012), Han,
Khapko and Kyle (2014) and Malinova, Park and Riordan (2013).

11Korajczyk and Murphy (2015) analyze liquidity provision to large institutional trade packages.
These are often split throughout the day to avoid detection by other market participants, but maybe
mistakenly interpreted by HFTs as sequential informed trades.
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provides a theoretical rationale for their distressing storyline. More specifically, our re-

sults indicate that in the absence or with low levels of informed trading, HFTs can

improve liquidity. More and faster HFTs reduce average transaction costs, and cause

quotes to converge faster to the efficient price.12 However, a different storyline unfolds

when suspicions of informed trading are high. In such situations, HFTs will shun the

market as documented in Korajczyk and Murphy (2015), even when these suspicions are

ex-post unfounded/incorrect (e.g. if they were induced by a fat-finger error triggering a

series of market orders). In those scenarios, only the LFTs can keep the market going. If,

however, LFTs have been largely crowded out of the market as described above, trading

will be thin, liquidity will be low, price discovery will be slow and markets can even stop

functioning altogether. As such, our model captures the potential systemic risk HFT

activity brings to financial markets. While an increase in HFTs’ market share improves

liquidity and price discovery under some market conditions, it induces market freezes to

arise in equilibrium with increasing frequency under other conditions.13

Our model also yields insights on how financial markets should be optimally orga-

nized and regulated to alleviate the potential market stability concerns HFTs bring. In

particular, we assess the effectiveness of several proposed (or implemented) regulatory

measures to manage HFT activity: (i) a financial transaction tax, (ii) minimum latency

requirements, (iii) the introduction of (contingent) make-take fees, and (iv) affirmative

liquidity provisions. Those measures are shown to affect the equilibrium number of

HFTs and LFTs (and as such, the aforementioned trade-off between high liquidity and

low systemic risk) in different ways. Furthermore, in an extension we explore a dynamic

setting featuring a more advanced information production technology. More specifically,

technologically-advanced traders are able to learn about informed trading in the recent

past by observing the order book. If informed trading shows persistence, this information

is useful in forecasting the likelihood of informed trading in the current period.

To our knowledge, no papers exist analyzing the effect of the introduction of HFTs

on market stability. Taking a wider perspective, our paper is related to different sets of

literature. First, our model contributes to the widely emerging theoretical HFT litera-

ture (e.g. Aı̈t-Sahalia and Saglam (2013), Bernales and Daoud (2013), Biais, Foucault

and Moinas (2015), Biais, Hombert and Weill (2010), Bongaerts, Kong and Van Achter

(2015), Budish, Cramton and Shim (2013), Foucault, Hombert and Roşu (2013), Han,

Khapko and Kyle (2014), Hoffmann (2014), Jovanovic and Menkveld (2011), Li (2014),

Martinez and Roşu (2011), Pagnotta (2010), and Pagnotta and Philippon (2012)). In

12These findings indeed concur with the early empirical results that the presence of HFTs improves
market quality. See e.g. Brogaard, Hendershott and Riordan (2013), Hasbrouck and Saar (2012),
Hendershott, Jones and Menkveld (2011), and Malinova, Park and Riordan (2013).

13This finding also puts forward a new channel through which the evidence on crashes and high-
frequency trading reported in Sornette and von der Becke (2011) could be understood. Moreover, it
could be seen as an additional negative outcome of the HFT arms’ race documented in Biais, Foucault
and Moinas (2015), Bongaerts, Kong and Van Achter (2015) and Budish, Cramton and Shim (2013).
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particular, our model is the first to focus on the systemic risk potentially brought to the

financial market by HFT activity. That is, it allows to endogenously generate (and ana-

lyze) market freezes and relate their occurrence to the degree of speed and information-

processing advantage that an investment in technology can generate.

Second, our model fits into the literature modeling dynamic trading in financial

markets through limit order books (e.g. Foucault, (1999), Goettler, Parlour and Rajan

(2005, 2009), Foucault, Kadan and Kandel (2005), Parlour (1998) and Roşu (2009)). The

limit order book setting we construct is most closely related to Cordella and Foucault

(1999) who consider two symmetric dealers competing for uninformed order-flow. We

add to this paper, and to the theoretical limit order book literature, by introducing

endogenous liquidity provision by multiple liquidity providers which can be either fast

or slow. Moreover, we incorporate potentially informed incoming order flow. The few

existing dynamic limit order book models which are solvable in closed-form (i.e., Foucault

(1999), Foucault, Kadan and Kandel (2005), and Roşu (2009)) all abstract from informed

trading.

The remainder of the paper is structured as follows. Section 2 introduces the setup

of our model. Section 3 presents a formal definition of the market equilibrium, and

Sections 4 and 5 analyze the equilibria arising under different informational settings.

Section 6 provides extensions of the model, while Section 7 presents an analysis of some

regulatory measures. Section 8 concludes. Proofs are relegated to an appendix. For the

reader’s convenience, a notational summary is included towards the end of the paper in

Appendix C.

2 Setup

Consider a limit order book for a security with payoff Ṽ . Given the available public

information on this asset, its fundamental value equals µ. The set of possible quotes at

which liquidity could be provided is discrete. The grid on which traders can post their

prices is characterized by the size of the minimum price variation (or tick size), δ. Note

that a smaller δ implies a finer grid. On the grid, as a notational convention, we denote

by 〈p〉− the highest price which is strictly lower than p. In a similar way, 〈p〉+ is the

lowest price which is greater than or equal to p. The set of possible prices on the grid

is Q = {..., p(−i), ..., p(0), ..., p(i), ...}, with p(i) = 〈µ〉− + i · δ and p(−i) = 〈µ〉− − i · δ,
and i ∈ N. We assume that µ− 〈µ〉− = 〈µ〉+ − µ = δ

2
(i.e., the position of the expected

asset value is halfway between ticks). In the remainder of the paper, we will focus on

traders posting sell limit orders on the ask side.14 We call p(1) the “competitive price”.

This is the first price on the grid above µ. Furthermore, time and price priority hold on

this market, and by assumption standing sell limit orders expire upon being undercut.

14The analysis for the bid side is completely symmetric.

6



Over time, which is continuous and indexed by t ∈ [0,+∞], market participants ar-

rive to the market. At a random time T̃ within the trading game, a liquidity demander

submits a market order which reflects her reservation price. This liquidity-demanding

trader can be either trading out of liquidity needs, or because she has private informa-

tion. Let us denote the type of liquidity demander that enters the market as a state of

nature ζ ∈ {liq, inf}, where liq and inf denote the liquidity induced and the private

information induced type, respectively. The unconditional probabilities of ending up in

states with ζ = inf and ζ = liq are given by π̄ and 1 − π̄, respectively. If ζ = liq,

the liquidity-demanding trader arriving is assumed to have a rectangular demand, that

is, she purchases 1 unit of the asset if the best ask price is lower than or equal to her

reservation price pliq. By assumption, pliq is positioned on the price grid, and T̃ is ex-

ponentially distributed with parameter νliq. In turn, if ζ = inf , with intensity νinf an

informed trader arrives to the market at some point and submits a market order to

buy the asset. She has accurate private fundamental information that Ṽ = µinf , where

µinf > pliq. By assumption pliq is also her reservation price for buying the security.15 As

such, liquidity providers in this market always run adverse selection risk, because they

cannot provide liquidity at a quote at which only the traders buying for liquidity reasons

are interested. If a liquidity demander ever arrives to an empty order book, the state of

nature stays the same and the liquidity demander will re-visit the market at a later time

again according to the same intensity. Importantly, none of the liquidity providers can

observe whether a liquidity demander has already sent a market order to the order book

when it was still empty. When the trade occurs, the game ends and the asset payoff Ṽ

is realized.

There is a unit mass of risk neutral agents in the market that can choose to invest in

liquidity provision technology before trading starts. These agents can choose to become

either of two types of liquidity providers: (i) advanced traders (ATs) that can be fast,

smart or both, and (ii) low frequency traders (i.e., LFTs). In our model the fraction of

agents that becomes AT is denoted by m ∈ [0, 1] and the fraction that becomes LFTs is

denoted by n ∈ [0, 1−m]. Before the trading game starts, ATs and LFTs need to make

fixed cost investments. More specifically, the masses of ATs and LFTs need to make an

investment mCA and nCL, respectively, which are borne equally by all constituents in

each respective group. Hence, individual ATs and LFTs face cost densities of CA and CL

respectively.16 These costs could be seen as annualized costs of IT infrastructure, fees

for keeping trading accounts or fees for co-location at the exchange and are incurred ex-

15There can be several reasons why informed traders have a reservation price that strictly falls short
of the private value. One can think about limited market capacity and staged trading with price
impact as in Kyle (1985), the need to recoup information production costs, having noisy information in
combination with risk aversion, etc.

16We consider a setting with a continuum of liquidity providers for tractability reasons. It can be
derived as the limit of a discrete case where the numbers of LFTs and ATs are large.
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ante. Once endogenously determined, m and n are assumed to remain constant over time

throughout the trading game.17 The derivation of the number of ATs and LFTs is closely

related to the average liquidity level in the book (that is, the average effective spread),

which is labeled S. In Subsection 3.4, the various components of this spread S will be

further explained. Moreover, as will be further detailed below, during the trading game

the four trader types differ in two other respects: (i) the magnitude of their monitoring

cost (which determines the frequency at which they are able to access the market), and

(ii) their processing capacity of real-time order-book information. When ATs are only

fast, they have lower monitoring costs and are therefore faster, but not better informed

than the LFTs. In turn, when ATs are only smart, they have superior ability to process

order book information and are therefore better informed, but are not faster than LFTs.

Finally, ATs that are both fast and smart are what we would classify as HFTs in today’s

limit order markets. Those traders are faster and better at processing information than

LFTs by the virtue of their superior hardware and co-location.

Over time, liquidity providers arrive randomly and post sell limit orders. In par-

ticular, traders arrive to the market following a Poisson process. To capture the speed

advantage of advanced traders relative to LFTs, we assume that ATs have technology

to monitor the market γ times as often as LFTs. As a result, aggregate LFT market

arrival intensity equals nλ, whereas the aggregate AT market arrival intensity is given

by mγλ. By assumption, γ > 1 for fast and HFT advanced trader types and γ = 1 for

smart ATs. This setup reflects the higher frequency with which fast traders and HFTs

monitor the market and submit limit orders (as e.g. documented in Brogaard et al.

(2014), Hagströmer and Nordén (2012), and Hendershott and Riordan (2013)), and also

captures the greater competition for exposure if γ and/or m increase. Furthermore, we

assume that smart ATs and HFTs have superior abilities to process information com-

pared to LFTs.18 These divergences in monitoring capacities are captured in different

information sets ψk available to the liquidity providers of type k. In particular, for

smart ATs and HFTs, ψAT contains a noisy but informative signal s ∈ {inf, liq} avail-

able about the state of nature. Signals s = liq and s = inf are correct with probabilities

φ1 ∈ (0.5, 1] and φ2 ∈ (0.5, 1], respectively. Let us for tractability reasons also assume

that the unconditional probability of a signal s = inf equals π̄ such that signals are

unbiased.19

17Note that when m+n < 1, some traders simply choose not to participate. We will assume that the
total mass of players eligible to be liquidity provider is so large that the upper bound of 1 never binds.
This ensures that for m and n we either have a boundary solution at 0 or an interior solution.

18This assumption, and its consequences, has been established in Aı̈t-Sahalia and Saglam (2013),
Hoffman (2014), and Jovanovic and Menkveld (2011). It is empirically validated in Brogaard et al.
(2014) and Malinova, Park and Riordan (2013).

19In Subsection 6.4, we extend the model to a dynamic setting where ATs learn by observing past
order flow. If states are persistent, observing past order flow allows them to forecast the current state of
nature in a rather accurate way. The assumption P (s = inf) = π̄ is also consistent with this framework.
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The information asymmetry among liquidity providers may lead to a lemons problem

that is so severe that markets freeze. We assume that such freezes are particularly

costly for ATs.20 In particular, every time the market freezes, the mass of advanced

traders incurs a cost mCM , to be split equally among all constituents. Hence, upon the

occurrence of a freeze, ATs face an additional cost density of CM .21 The expected freeze

costs are assumed to at least offset any information advantage an AT may have (i.e.,

CM ≥ φ2(µinf − pliq)). In the base case, we do not make any assumptions as to how the

market unfreezes again.22

3 Equilibrium

The aim of this section is to provide a formal definition of the equilibrium. First,

AT and LFT limit order placement strategies are characterized. Such a strategy is a

mapping Rk (·), with k ∈ [LFT,AT ], from the set of possible states of the order book

(i.e., standing best quote) into the set of possible offers Q. The reaction function Rk(·)
provides the new price posted by a trader of type k given the state of the order book

upon arrival. If a trader is indifferent between two limit orders with different prices, we

assume that she submits the limit order creating the larger spread. In a next step, we

define an equilibrium of the trading game, which is a pair of order placement strategies

(i.e., R∗LFT and R∗AT ) such that each trader’s strategy is optimal given the strategies

of all other traders. Finally, [conditions for] the equilibrium number of AT and LFT

traders, set in the initial participation stage, is [are] derived.

3.1 Traders’ Order Placement Strategies

We analyze trader k’s order placement strategy given a standing best ask quote â po-

sitioned on the price grid upon arrival at time τ .23 Assuming the time of arrival τ is

earlier than the time of arrival of the market order and given the information set ψk,

trader k’s expected profit of posting a limit order at quote a could be depicted as follows:

Πk(a, â) =

{
0 if a ≥ â

E
(

Φ (a, ψk) · (a− Ṽ )|ψk
)

if a = â− i · δ
(1)

20Among others, this is motivated by the fact that advanced traders such as HFTs are very thinly
capitalized and therefore very sensitive to increasing volatilities, margins and holding periods (see e.g.
Kirilenko et al. (2011), and Biais and Foucault (2014)).

21We normalize freeze costs for LFTs to zero.
22In Subsection 6.2 we put forward some mechanisms for the market to unfreeze.
23As by assumption all backlying sell limit orders expire upon being undercut by an order at â,

the order placement strategies depend only on this quote (and not on all the orders submitted at less
aggressive quotes). In Subsection 6.4 we sketch a repeated version of the model in which liquidity
providers can actively choose to cancel quotes or not when a new iteration starts.

9



where i ∈ N+, Φ (a, ψk) is the trader’s expected execution probability corresponding to

quote a, and E(·|ψk) is the trader’s expectation over states of nature conditional on

her information set. In particular, the asset value may equal µ or µinf , and traders

make assessments of this value and execution probabilities based upon the information

set they have upon their arrival. For both trader types, submitting an ask quote a

which is less or equally aggressive than the best quote upon arrival yields a zero ex-

pected execution probability and therefore a zero expected profit. In turn, submitting

a quote which improves the best quote upon arrival by i ticks features a positive ex-

pected execution probability hinging on future arriving traders’ strategies. Noteworthy,

when ζ = liq, undercutting to the competitive quote p(1) yields p(1)− µ with certainty

(i.e., Φ(p(1), ψk) = 1), as this quote can never be profitably undercut by any liquidity

provider. As such, upon arrival, the traders commonly face a trade-off between a higher

execution price and a higher expected execution probability.

3.2 Equilibrium Definition

Let Vk(â), with k ∈ {AT,LFT}, be trader k’s expected profit given that the current

best quote is â and the trader is about to react. Vk(â) can be expressed as:

Vk(â) = max
Rk∈Q

Πk(Rk, â) (2)

where all traders behave according to R∗LFT and R∗AT . Thus, both trader types account

for the expected profit of their current action only (i.e., Πk(Rk, â)). As players are

atomistic, the probability of arriving to the market again, given arrival now is zero.24

The solutions of these dynamic programming relationships yield the optimal order

placement strategies, R∗AT and R∗LFT . The expected execution probabilities of both

trader types are computed assuming that traders follow these strategies. Traders’ op-

timal order placement strategies hinge on the expected execution probabilities. The

expected execution probabilities are in turn determined by traders’ order placement

strategies. The type of equilibrium we are looking for is a Nash equilibrium.

3.3 Initial Participation Stage

The equilibrium definition of the trading stage in Subsection 3.2 starts from given masses

of ATs and LFTs, m and n, respectively. However, with fixed participation cost param-

eters CA and CL, participation may not be optimal for any masses of ATs and LFTs.

Therefore, as highlighted in the setup, the model starts off with a pre-trade participa-

tion stage which allows to solve for the equilibrium participation masses, m∗ and n∗. As

24It is possible to set up the model with a discrete number of LFTs and HFTs and allow for re-entering
the market. This hardly affects the results and comes with a substantial loss of tractability.
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agents are rational and we consider a market with perfectly competitive entry, ex-ante

expected equilibrium profits must be positive and will mostly equal zero. Hence, we

need to find a pair {m∗, n∗} with m∗, n∗ ≥ 0 such that for both player types marginal

utility of participation is positive but as close to zero as possible:

n∗ =

0 if Eâ (ΠLFT (R∗LFT (â), â)|m∗, n) < CL ∀n,

arg minnEâ (ΠLFT (R∗LFT (â), â)|m∗, n)− CL ≥ 0 otherwise,
(3)

and similarly

m∗ =

0 if Eâ (ΠAT (R∗AT (â), â)|m,n∗) < CA ∀m,

arg minmEâ (ΠAT (R∗AT (â), â)|m,n∗)− CA − IF π̄cM ≥ 0 otherwise,
(4)

where IF is an indicator function that equals one in case of a market freeze and 0

otherwise.

Brogaard (2011a) provides a decomposition of the profitability of HFTs which is ar-

gued to be highly dependent on their superior information processing capacity. Rents

may emerge from market making activities, collecting liquidity rebates, successfully per-

forming statistical pattern detection, upholding the law of one price and potentially

manipulating markets. These rents, however, are likely short-term oligopoly gains stem-

ming from (i) the decrease in the competition for liquidity provision by crowding out

adversely-selected LFTs (see Biais, Martimort, Rochet (2000)), and (ii) the limited en-

try of competitive HFTs. In turn, Baron, Brogaard and Kirilenko (2012) compute the

average trading profits for HFTs predominantly using limit orders and argue that they

do not systematically earn profits in line with our zero-profit condition. More generally,

our setting corresponds to a longer-term equilibrium state with free entry reflecting the

assertion that as the HFT industry matures the initial oligopoly gains will gradually

dissolve. It underpins our aim to analyze the impact of HFTs on market quality and

stability in a setting in which the technological advances are widely available to all

market participants, and in which any externalities related to oligopoly rents are absent.

3.4 Market Liquidity

The derivation of the equilibrium number of ATs and LFTs in the previous subsection

is closely related to the average liquidity level in the book (that is, the average effective

spread S). If all expected revenues are exactly offset by investments in the most liquidity-

enhancing technology, we would obtain a “first best” spread level SFB. However, we

may have that endogenous barriers to entry allow for rents. These are not oligopoly

rents (as discussed in the previous subsection, but revenues not spent on technology

(in expectation). Hence, these rents increase spreads as undercutting will occur slower

11



on average. Moreover, there may be allocative inefficiency in equilibrium, leading to

investments in inefficient technology and, therefore, lower undercutting speed and higher

spreads. Finally, superior information processing technology may become so widely

adopted that a substantial fraction of all informed trades can be avoided altogether.

However, this would mean that markets freeze every now and then, leading to revenue

losses on false positives and freeze costs. The net of those would be deadweight loss and

hence lead to an underinvestment in technology and thereby to increased spreads. Let

us call the expected spread markups due to rents, allocative inefficiency and net freeze

costs Srent, Sineff and Sfreeze, respectively. Hence, the expected spread encompassing

all these components could be written as follows:

E(S) = SFB + Srent + Sineff + Sfreeze. (5)

We will explicitly refer to these components in the different equilibria we analyze.

4 Quote Dynamics and Trading Costs

In this section, we characterize the equilibrium order placement strategies for cases with

(i) LFTs and fast, but equally uninformed ATs, (ii) LFTs and smart, but slow ATs,

and (iii) LFTs and smart and fast ATs (i.e HFTs). However, we first derive equilibrium

strategies for what we call the uninformed trading case where the informed state of

nature never materializes. The uninformed case is illustrative for our model setup and

an important building block for our more general case with informed trading. Moreover,

one can show that the equilibrium with fast ATs in the presence of informed liquidity

demanders can be derived from a simple transformation of the uninformed case. Next,

we develop the informed trading case. To maintain tractability, we look at an informed

case with certain parameter restrictions.25 The main features and trade-offs put forward

in this paper will largely extend to the unrestricted version of the informed case.

4.1 Uninformed Trading Case

The uninformed case is characterized in the model by setting π̄ = 0. This parameter re-

striction is maintained throughout Section 4.1. As divergences in information processing

capacities do not matter in this uninformed case, we can abstract from the information

sets ψk. Resultingly, each AT is in the trading stage of the game equivalent to γ LFTs.

As we will see later, if m and n are endogenous, the most cost efficient type of liquidity

provider will dominate the whole market. As the uninformed case is a building block

for the restricted informed case where LFTs and ATs can co-exist, we derive optimal

25A general informed case can be derived but has very low tractability.
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strategies for LFTs and ATs when they compete with one another.

4.1.1 Equilibrium Strategies

Consider a time τ (assumed earlier than the time of arrival T̃ of the uninformed market

order) at which a trader k arrives to the market. Let us assume that the standing

best price in the market upon arrival â is strictly above p(1). Joining the queue at the

standing best quote or reverting to a backlying quote upon arrival yields this trader a zero

execution probability, and thus zero profit. In contrast, undercutting to the competitive

quote p(1) yields a positive expected profit of p(1) − µ with certainty. As such, queue-

joining or reverting strategies are always strictly dominated by an undercutting strategy

in terms of expected payoffs, and hence will never be played (see also Subsection 3.1).

Furthermore, as traders are atomistic, there is a zero probability of arriving in the market

again and observing a self-submitted standing best quote.

In case the standing best price in the market upon arrival â equals p(1), the com-

petitive price is reached. This implies that it is no longer possible to play a profitable

undercutting strategy. We assume arriving traders observing this quote upon arrival

choose to join this best queue. This allows us to establish the following properties of

the equilibrium order placement strategies and consequently of the expected equilibrium

execution probabilities:

Lemma 1 (Monotonicity). Consider equilibrium order placement strategies R∗LFT (·)
and R∗AT (·) with π̄ = 0. For all parameter values, these functions have the following

properties:

(P1) R∗k (â) < â if â ≥ p (2); and

(P2) R∗k (p (1)) = p (1).

As a result, the expected execution probability of a limit order undercutting the stand-

ing best quote â is derived as follows:

• For limit orders undercutting to a quote which is strictly larger than p(1), submitted

by an AT and LFT, respectively, we have:

Φ(R∗AT (â)) = Φ(R∗LFT (â)) =
νliq

νliq + λ(γm+ n)
≡ Φ. (6)

For a limit order undercutting to p (1), we have:

Φ(R∗AT (â)) = Φ(R∗LFT (â)) = 1. (7)
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Proof. See appendix.

Summarizing, Lemma 1 is important for two reasons. First, (P1) states that in

equilibrium, the best ask quote must decrease as long as it is strictly greater than

the competitive price p(1). Undercutting is thus the unique possible evolution for the

best ask quote. Second, (P2) claims that, with time priority, the unique focal price

is the competitive price.26 These results imply that there necessarily exists a price

p̃∗ ∈ (p(1), pliq], such that when the best quote reaches p̃∗, the arriving trader without

execution priority finds it optimal to post p(1) and thus secure execution. The next

proposition characterizes the unique price at which the “jump” to the competitive price

occurs. It also provides traders’ order placement strategies in equilibrium.

Proposition 1 (Equilibrium Order Placement Strategies - Uninformed Trading Case).

With time and price priority enforced, any market participant k ∈ {LFT,AT} follows

the following strategy when observing quote â upon arrival:

Rk =


pliq if â− δ ≥ pliq

â− δ if pliq > â− δ ≥ p̃∗

p(1) if â− δ < p̃∗
, (8)

where

p̃∗ =

〈
µ+

δ

2Φ

〉+

= p(1) +

⌊⌊
1− Φ

2Φ

⌋⌋
· δ (9)

with bbxcc denoting the greatest integer strictly lower than x.

Proof. See Appendix.

The intuition for Proposition 1 is as follows. Consider a trader k arriving in the

market at time τ , observing a standing limit order at quote â which is smaller or equal to

the incoming market order trader’s reservation price pliq. This trader faces the following

trade-off. If she quotes the competitive price, she secures execution and obtains with

certainty a profit equal to p(1) − µ = δ
2
. If instead she undercuts â by only one tick,

she obtains a larger profit (i.e., â − δ − µ) in case of execution. Yet, she then runs the

risk of being undercut by a subsequently arriving trader before the market order has

arrived. Hence, the payoff of this limit order accounts for the corresponding execution

probability (see Lemma 1 ). When p̃∗ is reached in the sequential undercutting process,

traders switch strategies from tick-by-tick undercutting to quoting p(1) immediately.27

26Following Maskin and Tirole (1988), we call a focal price a price p on the equilibrium path such
that Rk(p) = p. If there exists a focal price, once it is reached, the traders keep posting this price until
the arrival of the market order.

27Comparable quote undercutting patterns within the limit order book have been derived in Foucault,
Kadan and Kandel (2005) and Van Achter (2012), and empirically observed in Biais, Hillion and Spatt
(1995) .
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To get an idea of how the undercutting patterns look like, one could have a look at

Figure 1. The undercutting starts at pliq and continues with all players undercutting

each other. When p̃∗ is reached, all traders jump to p(1), which is the quote at which

execution will later take place when the liquidity demander arrives (here at time 190).

The early empirical literature has found that ATs in general improve market liquidity

(see e.g. Brogaard, Hendershott and Riordan (2013), Hasbrouck and Saar (2012), Hen-

dershott, Jones and Menkveld (2011), and Malinova, Park and Riordan (2013)). Lemma

1 and Proposition 1 provide insights into how ATs improve market liquidity absent in-

formation asymmetry. In this setting, more liquidity providers are beneficial for market

liquidity for two reasons. First, with more liquidity providers, the arrival frequency of

liquidity providers to the market is higher, leading to faster undercutting and therefore

lower effective spreads. Second, the increased competition for order flow will also induce

more aggressive strategies from liquidity providers, inducing them to jump to p(1) earlier

(i.e., higher p̃∗). Holding constant the total mass of liquidity providers, both effects are

stronger with ATs, because those have γ ≥ 1.

4.1.2 Expected Trading Profits

In order to calculate the equilibrium masses of ATs and LFTs, m∗ and n∗, respec-

tively, we need to calculate the expected profit densities E(
∑

â ΠAT (R∗LFT (â))) and

E(
∑

â ΠLFT (R∗LFT (â))). If, conditional on m and n, the strategies R∗AT and R∗LFT are

played, we can distinguish two regions along the equilibrium path. In the first region

from pliq down to p̃∗ inclusive, denoted “UC”, both ATs and LFTs undercut the stand-

ing best quote tick-by-tick when upon arrival to the market. In the second region,

denoted “comp”, each liquidity provider that accesses the market will post a quote at

the competitive price p(1). Figure 1 depicts these two regions graphically.

Next, let us first define λ̄ = (n + γm)λ, the overall arrival intensity of liquidity

providers. Moreover, let us define Z as the number of ticks from pliq up to p̃∗ inclusive.

Proposition 2 then presents the unconditional expected profits for both trader types.

Proposition 2 For an LFT and an AT, the unconditional expected profit densities are

respectively given by:

E

(∑
â

ΠAT (R∗LFT (â))

)
= (1− fLFT )m−1(E(ΠUC + Πcomp)), (10)

E

(∑
â

ΠLFT (R∗LFT (â))

)
= fLFTn

−1(E(ΠUC + Πcomp)), (11)
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where

E(ΠUC) =
Z∑
i=0

νliqλ̄
i

(νliq + λ̄)i+1
(pliq − i · δ − µ), (12)

E(Πcomp) = (1− PUC)(p(1)− µ). (13)

PUC =
Z∑
i=0

νliqλ̄
i

(νliq + λ̄)i+1
, (14)

fLFT =
n

n+ γm
. (15)

Proof. See appendix.

The interpretation of the expressions in Proposition 2 is as follows. ATs and LFTs

share in the aggregate expected surplus according to their relative presence in the market

given by fLFT . The aggregate expected profits in the UC region are given by the

probability-weighted average trading profit at each tick in this range (where weights

can sum to less than one). The aggregate expected profit in the comp region is given

by the probability of reaching it times the guaranteed profit of half a tick. With the

expressions in Proposition 2, we can derive the equilibrium number of ATs and LFTs.

As expected profits for both LFTs and ATs are monotonically decreasing in m and n

and cost densities are constant, it is always possible to find an equilibrium with a strictly

positive mass of at least one type of liquidity providers.

At this point, we can apply a trick to facilitate our analysis. Due to the assumption

of exponentially distributed arrival times, aggregate liquidity provider arrival intensities

are linear in m and n with coefficients γ and 1, respectively. Total costs for liquidity

provision are also linear in m and n with the same coefficients. Therefore, one AT with

speed γ and cost CA is equivalent to γ ATs with speed 1 and cost CA

γ
. We state the

following lemma without proof:

Lemma 2 The original problem is equivalent to a modified problem in which each AT

has speed 1, cost density CA

γ
and where the mass of ATs is γ times as large. This result

holds in the uninformed and informed setting.

Lemma 2 simplifies our analyses considerably. The equilibrium masses of ATs and

LFTs can now be derived in a straightforward way. We have a competitive market

with free entry for a homogeneous product. Therefore, prices in equilibrium must equal

production costs of the most efficient producer of liquidity provision services. As liquidity

provision at those expected revenues is not profitable for the least efficient liquidity

provider, the most efficient liquidity providers must dominate the market. Hence, if
CA

γ
≤ CL we will only have ATs in equilibrium and if CA

γ
> CL, we only have LFTs.
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Proposition 3 In the uninformed case, liquidity provision is conducted in equilibrium

by ATs when CA

γ
≤ CL, and by LFTs otherwise.

Proof. See appendix.

Due to Proposition 3, allocation is always efficient. Moreover, as entry into the

market is free, liquidity providers cannot make positive profits in expectation.28 Hence,

expected spreads must be at their first best level SFB. In case ATs are able to produce

liquidity provision services at lower costs, they completely take over the market and do

so at lower spreads.

4.2 Informed Trading Case

In this subsection, we work out the model including information asymmetry. Within

the uninformed trading case, the market would be dominated by either ATs or LFTs,

depending on the cost of speed (see Proposition 3). In the setting with information

asymmetry, we can have that LFTs and ATs both participate in equilibrium. Smart

ATs and HFTs have the benefit that they can process information better than LFTs.

This allows them to forward toxic order flow to LFTs, hence draining LFT profits and

increasing their own.29 However, this information processing superiority can lead to a

lemons problem that results in costly market freezes which will be further analyzed in

Section 5. The possibility of such market freezes can form entry barriers for ATs. As a

result, equilibria may be possible with both LFTs and ATs.

To facilitate exposition and tractability, we assume infinitely impatient informed

liquidity demanders, that is νinf = ∞.30 One could think about this assumption as

having a large informed trader that has a substantial volume to trade and sequentially

splits this in smaller blocks (as for instance documented in Admati and Pfleiderer (1988)).

The informed trader will monitor the market constantly in order to push through the

volume as quickly as possible (for example because information may be perishable). The

main advantage to this way of modeling is that informed trading is immediately disclosed

as soon as a limit order is put into the book. This makes the inference for LFTs that

arrive to a non-empty order book trivial: there is no informed trading. Therefore, if a

quote survives, the trading game reduces immediately to the uninformed case. Hence,

it is sufficient to solve for the opening bid of the trading game only and all uncertainty

is resolved right at the beginning of the stage game.

28We refer to Foucault, Kadan and Kandel (2013) for an analysis on how an investment in speed
(allowing to submit limit orders faster) implies traders are able to capture a larger fraction of the
available profit opportunities.

29See also Biais, Declerck and Moinas (2014), Easley, Lopèz de Prado and O’Hara (2012), Han,
Khapko and Kyle (2014) and Malinova, Park and Riordan (2013).

30The model can be extended to allow for more patient informed liquidity demanders, at the expense
of reduced tractability and increased notational complexity. The main results will be largely unaffected.
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Below, we first show how under this impatience assumption, the equilibrium with

fast ATs is equivalent to the uninformed case with a parameter transformation. Next,

we develop trading equilibria in the presence of smart ATs and HFTs.

4.2.1 Only Speed Matters: Equilibria with Fast ATs

The uninformed case is easy to derive and offers high tractability. However, to do a

full comparison among the different settings with the different types of ATs, we need

to have a setting with fast ATs and informed trading. In this subsection, we show that

under mild conditions the equilibrium with fast ATs can easily be obtained from the

uninformed case. To see this, one should realize that informed trading generates un-

avoidable losses for ATs and LFTs alike, since none of them can use any conditioning

information. Therefore, these expected losses when entering an opening quote in the

book can be considered as exogenous as long as they do not exceed the expected profits

from providing liquidity to uninformed liquidity demanders. Therefore, the expected

losses (and somewhat lower expected income) can be seen as an additional fixed cost.

Hence, quote posting strategies are identical to those in the uninformed case (see Propo-

sition 1). The only difference is in the participation stage, where participation is more

costly. Therefore, the equilibrium strategies are the same as the equilibrium strategies

arising from the uninformed case with the following modifications to participation cost

densities:

C̃L =
CL + π̄ 1

n+γm
(µinf − pliq)

1− π̄
, (16)

C̃A =
CA + π̄ γ

n+γm
(µinf − pliq)

1− π̄
. (17)

4.2.2 Information Processing Matters: Equilibria with Smart ATs and HFTs

To derive the optimal quote posting strategies for ATs and LFTs, with νinf = ∞ it

suffices to analyze their respective strategies upon arrival to an empty book. When an

AT arrives to an empty book, it will only add a quote pliq when the expected profits from

posting an initial quote outweigh the expected losses from doing so. Expected freeze

losses do not contribute to this decision, as those are infinitely small for an individual

AT. In contrast, adverse selection losses can be substantial on an individual basis. Intu-

itively, this could be seen as a traditional commons problem in which no AT individually

internalizes the general freeze cost. Therefore, it is optimal to post an initial quote when

the expected gain of providing liquidity to uninformed order flow exceeds the expected

loss due to liquidity provision to informed order flow:

(pliq − µ)P̂ (ζ = liq|ψAT )Φ(ζ = liq) ≥ (µinf − pliq)P̂ (ζ = inf |ψAT )Φ(ζl = inf) (18)
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where P̂ (ζ = inf |ψAT ) and P̂ (ζ = liq|ψAT ) are the posterior probabilities for the AT of

having an informed or uninformed trader as the first liquidity demander to come to the

market, respectively. We have that:

P̂ (ζ = inf |ψAT ) =

φ2 if s = inf,

1− φ1 if s = liq.
(19)

The execution probabilities are also completely defined, because in the case of in-

formed trading execution is guaranteed and immediate. In contrast, with uninformed

trading, the game reduces after the first stage to the uninformed trading game. Hence,

we have:

Φ(ζ = inf) = 1, (20)

Φ(ζ = liq) = Φ. (21)

Substituting these expressions and (6) into (18) and rewriting indicates that an AT

will never post a quote to an empty book at all if:

(γm+ n) >
νliq(pliq − µ)φ1

λ(µinf − pliq)(1− φ1)
. (22)

Note that if it is not profitable for ATs to post in an empty book, the same must be

true for LFTs, as ATs have superior information over LFTs.

On the other hand, an AT will always post a quote in an empty book if

(γm+ n) ≤ νliq(pliq − µ)(1− φ2)

λ(µinf − pliq)φ2

. (23)

In all other cases ATs will post upon a signal s = liq and will not post upon signal

s = inf .

In turn, for the LFT, there is a similar profitability condition to be met. In order to

post a quote to an empty book the expected gains from liquidity provision to uninformed

order flow must exceed the expected loss from providing liquidity to informed order flow:

(pliq − µ)P̂ (ζ = liq|ψLFT )Φ(ζ = liq) ≥ (µinf − pliq)P̂ (ζ = inf |ψLFT )Φ(ζ = inf), (24)

Naturally, this inequality is more likely to be violated when the posterior probability of

informed trading is larger, informed trading losses are larger, uninformed trading gains

are lower and uninformed trading execution probabilities are lower.

19



Proposition 4 LFTs leave the market when informed trading losses are large, unin-

formed trading gains are low, uninformed trading execution probabilities are low and the

posterior probability of informed trading conditional on arrival to an empty order book

is high. This posterior probability is increasing in: (i) the fraction of ATs (m), (ii) the

ATs’ speed advantage (γ), (iii) the probability that the informed trading signal is correct

(φ2), and (iv) ATs conditioning on information. It is decreasing in: (i) the fraction of

LFTs (n), and (ii) the unconditional probability of ending up in an informed state (π̄).

5 Profitability, Participation and Market Failure

Having established optimal strategies of the different players in this economy, we can

now analyze the costs and benefits of having market participants with advanced tech-

nology available. In line with economic intuition, we find that the availability of speed

technology in itself is good. If it is inefficient (i.e., too expensive), it will not be adopted

and vice versa. Competition among liquidity providers assures that the lower costs of

providing liquidity benefits society as a whole in the form of more liquid markets.

Proposition 5 If LFTs can only choose to adopt speed technology, the availability of

this technology never reduces liquidity. If it is efficient enough, it takes over the whole

market and market liquidity improves.

Proof. See Appendix.

The availability of information processing technology on the other hand may trigger

information asymmetry problems. To analyze those, let us first define expected profit

functions for LFTs and ATs with information technology conditional on their optimal

quote posting strategies. First let b = γm. Due to Lemma 2 this transformation is

without loss of generality. Next, let us define:

g(b+ n|p̃liq = q) =
E(ΠUC + Πcomp)

n+ b
. (25)

One can easily verify that g′(·) < 0.

If in equilibrium Equation (23) is satisfied, ATs always quote at an empty book as

in the speed-only case. In this case, information technology is irrelevant and the most

efficient liquidity provider dominates the market.

Proposition 6 Information technology is irrelevant if participation costs are high, in-

formation technology is inaccurate, uninformed trading is intense and informed trading
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losses are small. This is the case when:

g−1

(
min

(
C̃A
γ
, C̃L

)∣∣∣∣∣ pliq
)
≤ νliq(pliq − µ)(1− φ2)

λ(µinf − pliq)φ2

. (26)

Under this condition, liquidity provision is efficient.

Proof. See Appendix.

Let us now consider what happens if Equation (26) is violated. Define

gA(b+ n) =

(1− π̄)

(
(1− Φ)g(b+ n|p̃liq = pliq − δ) +

φ1(pliq − µ)Φ− (1− φ1)(µinf − pliq)
n+ b

)
. (27)

Whenever Equation (26) is violated and Equation (24) is satisfied, gA(b + n) is the

marginal profit from trading for ATs. Whenever Equation (26) and Equation (24) are

violated, the marginal profit from trading for ATs is given by:

hA(b, n) =

(1− π̄)

(
(1− Φ)g(b+ n|p̃liq = pliq − δ) +

φ1(pliq − µ)Φ− (1− φ1)(µinf − pliq)
b

)
. (28)

One can verify that g′A(·) < 0 and h′A(·) < 0 are negative on their domains.

Let us also define

gL(b, n) = gA(n+ b) + π̄
(1− φ2)(pliq−µ)Φ− φ2(µinf − pliq)

n
. (29)

Whenever Equation (24) is satisfied and Equation (26) is violated, gL(b, n) is the marginal

profit from trading for LFTs. One can verify that gL(0, n) = CL iff g(n) = C̃L. Whenever

Equation (24) and Equation (26) are violated, marginal profit from trading for LFTs is

given by:

(1− π̄)(1− Φ)g(b+ n|pliq − δ). (30)

The marginal cost density for LFTs is given by CL. For ATs, the marginal cost

density equals CA

γ
if Equation (24) is satisfied and equals CA

γ
+ π̄cM if Equation (24) is

violated.

Finally, let us define the pair (b̄, n̄) as the point at which (1−π̄)(1−Φ)g(b+n|pliq−δ) =

CL and Equation (24) binds exactly. One should note that participation in an empty

book yields zero expected profit for LFTs in (b̄, n̄). Therefore, marginal expected profits

from trading for LFTs are continuous in this point.

We can now formulate the main proposition of our paper:
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Proposition 7 Assume Equation (26) is violated implying information technology be-

comes relevant. We then have that:

1. Liquidity is exclusively provided by LFTs if gL(g−1
A (CA

γ
), 0) > CL, which is efficient.

2. ATs and LFTs co-exist and jointly provide liquidity with masses b̄ and n̄ respectively

if gA(g−1(C̃L)) > CA

γ
, gA(b̄ + n̄) > 0 and hA(b̄, n̄) < 0. ATs receive rents in this

case, but freezes do not occur.

3. Liquidity is exclusively provided by ATs if gA(b̄ + n̄) > 0 and hA(b̄, n̄) > 0. In

this case, a market freeze takes place with probability π̄. ATs break even, but this

outcome is inefficient.

Proof. See Appendix.

Proposition 7 allows to assess the social value of speed and information technology

and in particular the bundled HFT package.

If ATs only have access to information technology (i.e., γ = 1), the outcome depends

on parameters. If CA >> CL, information technology is likely to be too expensive and

scenario 1 in Proposition 7 materializes. If CA = CL + ε, where ε is small and cM is

large, ATs will need to prevent freezes as those are excessively costly. However, due to

their informational advantage, it is profitable for them to enter when it is not for LFTs.

As marginal profits for both LFTs and ATs are strictly declining in m and n, entry

by ATs must reduce the number of LFTs, which in turn allows for more AT entry. At

some point however, Equation (24) binds, ATs still have strictly positive average and

marginal profit, but beyond this point marginal profit for ATs drops below 0. Hence, in

this equilibrium Equation (24) binds, ATs have strictly positive profits and no freezes

occur. As a result, we will have that Srent > 0 and Sineff > 0.

In turn, if ATs possess both speed and information technology (i.e., are HFTs), all

three scenarios in Proposition 7 are possible. If HFT technology is excessively expensive,

(i.e., CA

γ
>> CL), only LFTs provide liquidity as in scenario 1. If CA

γ
is close to CL,

scenario 2 materializes with ATs co-existing with LFTs. One should note that this

could lead to the implementation of inefficient speed technology (as with smart but slow

ATs), or to under-investment in efficient speed technology (when CA

γ
is slightly lower

than CL and cM is large). Finally, the last option could materialize if CL >>
CA

γ
. In

this case, cost savings due to a much more efficient technology create an allowance for

freezes. Allocation in this case is efficient, as all liquidity is provided by the most efficient

providers, but still falls short of first best. The reason is that the freeze losses create

welfare costs and hence lead to an under-investment in this technology. As a result, we

will have that Sfreeze > 0. Brogaard (2011b) shows HFTs are low cost competitors for
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LFTs which suggests that we are in (or are heading for) this final state where CL >>
CA

γ
.31

In itself, the restricted version of the model featuring νinf =∞ is sufficient to illus-

trate the main insight of the paper, namely the emergence of market freezes accompa-

nying increases in activity of HFTs. Starting from a more general version of the model

in which quote cancelations are impossible, complete market freezes are found only to

arise at the beginning of the undercutting sequence, as is the case in the stylized version

of the model.32 In that case, the main difference between the stylized and the general

model would be that the undercutting speed in the general model would be lower, but

that posting the first quote of the sequence would be less risky.

6 Extensions and Practical Considerations

In this section, we address several practicalities and possible extensions to our model.

Most of these extensions, except for the last, we address informally due to tractability

limitations. The first extension relates to the fact that market participants in practice

can have dual roles. We argue that an endogenous choice for using market or limit orders

could incentivize LFTs to leave the market even more easily. The other three extensions

address issues that play up in repeated versions of our model. In a repeated version of the

model, frozen markets need to be defrosted, preferably in an endogenous way. Section

6.2 outlines the mechanics behind one possible unfreezing mechanism. In a repeated

version of the model, assumptions on the expiry or survival and the cancelability of

quotes play an important role. In Subsection 6.3, we sketch how such assumptions in

a repeated version of the model would affect our results. Finally, in Subsection 6.4, we

develop a dynamic model in which the generation of signals s is endogenously derived

rather than exogenously assumed.

6.1 Dual Roles in Limit Order Markets

One of the features that crucially characterize a limit order market is that participants

can trade either using limit orders or using market orders. In our setting, the freezes can

arise because LFTs start to exit the market. In reality, LFTs with a trading need and

a moderate tolerance for execution uncertainty (i.e., reasonable degree of patience) may

31Accordingly, he indicates that HFTs are often able to position their limit orders ahead of the queue
of limit orders (i.e., they post quotes at least equal to the best quotes 50% of the time and stand alone
at the best quotes 19% of the time) which also corroborates our findings. Similarly, Biais, Declerck and
Moinas (2014) show that as HFTs are less exposed to adverse selection, they execute a larger proportion
of trades via passive limit orders than LFTs.

32If quotes are not cancelable, a standing best quote can survive in the book for very long when
informed trading suspicions are high, but it cannot disappear. Hence, the only way to have a freeze is
to not have a quote posted in the first place.

23



provide liquidity in order to generate extra revenues and save transaction costs (note

that in our setup, the degree of impatience for a certain trade is captured by CL). Hence

they trade off execution uncertainty with transaction costs. We argue that the dual role

makes freezes only more likely in the presence of HFTs. After all, while revenues from

liquidity provision deteriorate, the alternative of using market orders to conduct their

planned trades becomes cheaper due to more intensive competition from HFTs.

6.2 Unfreezing Markets

One of the main causes of the market freezes in the presence of HFTs is that in the model

uninformed liquidity demanders do not update their reservation values during market

failures. After all, if pliq were to adjusts upwards while µinf stays constant, expected

losses due to providing liquidity to informed traders go down, while expected gains from

providing liquidity to uninformed order flow go up. Hence, we can let markets unfreeze

by letting pliq increase after a while.

Would it be reasonable for this to happen in practice? We argue that it is. After all,

the uninformed liquidity demanders depend on transaction prices for their information

to base their reservation prices on. When markets freeze, the last information available

to them would imply a value of µ. Only after a while, they might realize that the market

has not moved for a long time and rationally increase their reservation value. After all,

there is a relatively larger (posterior) probability of a higher valuation then.

For informed liquidity demanders it would also be optimal to increase reservation

values in similar fashion to those of the uninformed liquidity demanders. First, this

way they keep mimicking the uninformed liquidity demanders and make inference by

liquidity providers harder. Second, after a while, it is likely that information would

start to perish. In a frozen market, the probability of capitalizing on information is very

small. Therefore, informed liquidity demanders would after a while be willing to settle

for lower informed trading losses.

6.3 Quote Expiry and Cancelation

For the sake of simplicity and tractability, we present a one-period model in our paper. If

this model were extended to a repeated version covering subsequent trades, assumptions

would have to be made on quote expiry and the possibility to cancel quotes. If all quotes

in the book are to expire upon the transaction taking place (and hence the end of a stage

game), the one-period results we derive apply to each stage game. However, if quotes can

survive to the next stage game, results may change somewhat. To analyze the effect of

non-expiring quotes, consider a two-period version of the game where quotes carry over

to the next stage game.33 Moreover, let us assume that quotes can be canceled upon the

33For tractability reasons, we limit ourselves here to a sketch of the model.
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start of the second stage game. Finally, assume that ATs with information technology

get a noisy but informative signal s upon the start of the stage game that they can use

to base their cancelation decision on. The cancelation decision in this setting is very

similar to the book opening of the one-period model. The only difference is that given

n and m, the expected profitability of the two periods can be different. In particular,

the opening quote in the second period is never higher and often lower than in the first.

Therefore, the risk of informed trading is higher in the second period than in the first

as expected gains from uninformed trading are lower and expected losses from informed

trading are higher. As a consequence, LFTs will be more reluctant to provide liquidity

in the second period, making freezes more likely. If the difference in profitability between

the first and second opening is large, positive informed trading profits for ATs in the

first period opening can be so large that an allowance for freeze losses in the second

period opening is created. Hence, for limited parameter ranges and in the presence of

information technology, we may have freezes in the second period that were not there in

the one-period model.

6.4 A Dynamic Setting

So far, the information production technology in our model has been exogenously given.

If one extends the model to a fully dynamic model, then information production can be

made explicit and endogenized in the model. To this end, let us consider an infinitely

repeated version of our trading game. In every stage game l, a state of nature ζl is drawn

according to a Markov Switching process with transition matrix:[
α 1− α

1− β β

]
, (31)

where α and β denote the probabilities of continued liquidity trading and continued

informed trading, respectively. In turn, 1−α and 1−β denote the switching probabilities

from liquidity to informed and from informed to liquidity trading, respectively. Uncon-

ditional steady state probabilities are then given by π̄ = 1−α
2−β−α and 1− π̄ = 1−β

2−β−α . This

setup allows to capture the clustering of informed trades as further documented below.
34

We now assume that informed order flow is less patient than uninformed order flow

(i.e., νinf > νliq) and that smart ATs and HFTs can perfectly observe the historical

evolution of the order book. The difference in patience between informed and uninformed

liquidity demanders allows for inference about trading types in previous periods by ATs.

This information is particularly useful when β 6= 1− α, because information about the

34Informed trade clustering may for instance arise because at some times there is more private in-
formation available than at others, or because a single informed trader slices his trading volume into
smaller trades and feeds them consecutively to the market (see e.g. Admati and Pfleiderer (1988)).
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previous liquidity-demanding trader type will then help to better forecast the current

trader type. In particular, when νinf = ∞, ATs can perfectly infer the state of nature

of the previous stage game. In that case, we get a perfect Bayesian equilibrium. The

signal accuracy parameters are then given by

φ1 = α, φ2 = β. (32)

For the fully dynamic setting some conditions need to be satisfied for LFTs to be un-

able to learn and for the learning of ATs from order flow to be rational and internally

consistent. In particular, we need to have that signals are indeed informative of future

price moves, while LFTs cannot learn anything from price moves. One can achieve this

by letting prices react to public information releases and set conditions on the news

release process. These conditions on public information releases and price processes are

described and derived in Appendix B.

7 Effectiveness of HFT Regulatory Measures

In the previous section, we have shown that liquidity provision by HFTs can lead to

market freezes, mainly as a result of a lack of liquidity providers willing to absorb po-

tentially toxic order flow. Several measures have been introduced or suggested recently

for regulators to get more grip on HFTs. These include (i) transaction taxes, (ii) la-

tency restrictions, (iii) make-take fees, and (iv) affirmative liquidity provision.35 The

framework introduced here helps to analyze the effectiveness of each of those proposals.

First, let us have a look at transaction taxes. Imposing an exogenous unavoidable

transaction tax would be equivalent to having a larger participation cost. Obviously,

if transaction taxes are only levied on HFTs (as occurs in France, where an HFT tax

was adopted in August 2012) the cost of being an HFT goes up and being fast may

not be efficient anymore. Hence, it is possible that instead of freezes, we get inefficient

adoption of speed technology. It is also possible that the larger costs do not make HFTs

inefficient, but merely limit the cross-subsidization from speed to freezes and hence helps

to avoid freezes by leaving market share to LFTs. Even if transaction taxes are uniformly

applied, HFTs will suffer relatively more if speed technology is efficient. To see this, one

should realize that the relative increase in costs is higher for HFTs than LFTs as before

taxes, HFT costs per unit of speed are lower (and tax costs add linearly). As a final

note, one should realize that liquidity is bound to go down due to two effects. First, the

competitive price p(1) will not be quoted anymore as it is very likely to be loss-making

in the presence of transaction taxes. Hence, the taxes will at least partially be forwarded

35For a detailed overview and assessment of the proposed policy measures to deal with HFTs, we
refer to Section 6 of the final project report on the future of computer trading in financial markets
performed by the UK Government Office for Science (2012).
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to liquidity demanders. Second, as gains from trade are lower, there is less surplus that

liquidity providers can capture and therefore, the funds available to invest in liquidity

providing facilities is reduced. As a result, undercutting slows down and average spreads

increase.

Second, policymakers have suggested to impose latency restrictions on HFTs. De-

pending on the exact form these latency restrictions take, HFTs could become more like

smart ATs. Benefits from superior speed would in that case disappear, but so would the

costly market freezes (assuming speed technology is efficient before latency restrictions

are introduced).

Third, several exchanges by now have introduced make-take fees as an incentive

scheme for liquidity providers to provide liquidity. In our model, static make-take fees

would resort little effect. Such fees would lower the reservation prices of liquidity de-

manders, but also allow liquidity providers to continue undercutting to levels even below

the fundamental value µ. Hence, static fees would merely resort a level-shift rather than

substantially different behavior from market participants. One could however introduce

a “dynamic make-take fee” that becomes particularly high when markets freeze or be-

come very illiquid. This would effectively be a tax on informed liquidity demand to

benefit liquidity provision in dire times. As a consequence, expected informed trading

losses are reduced (pliq in the model is effectively increased) and liquidity providers are

more quickly inclined to re-launch markets again.

Finally, we can have a look at affirmative liquidity provision. Affirmative liquid-

ity provision in its strictest sense means that a liquidity provider is forced to provide

liquidity at competitive prices at all times the venue is open and regardless of market

condition.36 However, in reality this is unrealistic. In extreme market circumstances,

liquidity providers will simply refuse to provide liquidity to avoid “catching a falling

knife”. A more realistic version is that the failure to provide liquidity to the market

at reasonable spreads would be met with fines.37 Such a situation is incorporated in

our model. The freeze cost parameter cM would now also account for the severity of

such fines. As cM increases, being in a freeze becomes more expensive, which creates an

incentive to reduce HFT entry, keep LFTs in the market and avoid freezes altogether.

Hence, affirmative liquidity provision can help to avoid the most damaging market im-

pact of HFTs on market freezes at the expense of liquidity in normal times. Further

gains can be made if the proceeds of these fines are used to subsidize liquidity provision

in a freeze as with the dynamic make fees.38

36The current MiFID II draft mentions such a proposal in Article 17.
37Note that this type of affirmative liquidity provision was also practiced in the past with the NYSE

specialist.
38The main practical difficulty may be that, when affirmative liquidity provision is introduced on a

market, HFTs and the majority of the trading may move to less regulated venues. Therefore, in order
for this approach to be effective it is crucial that such legislation is introduced in a coordinated way.
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8 Conclusion

In this paper, we analyze the consequences of the emergence of high-frequency traders

(HFTs), complementing or replacing the traditional liquidity providers on financial mar-

kets. Our framework of analysis is a dynamic limit order book model in which HFTs

compete for incoming order flow with low-frequency traders (LFTs), such as traditional

market makers or institutional investors. HFTs are modeled to be superior over LFTs

in two dimensions (which corresponds to practice). First, HFTs have a speed advan-

tage, enabling them to submit limit orders at higher frequencies than LFTs. Secondly,

only HFTs possess the information-processing technology to make real-time inferences

on “hard information” (such as transaction times).

Our findings indicate that an increase in the number/speed of HFTs improves mar-

ket liquidity in the absence or with low levels of informed trading, which is in line

with the early empirical literature on HFTs. Yet, the synergy between the speed and

the information-processing technologies which is naturally inherent to HFTs, can make

market liquidity less stable over time. Interestingly, it is speed superiority, the fea-

ture that has the largest potential benefit for improving market liquidity, that amplifies

asymmetric information problems to the point where markets stop functioning when

suspicions of informed trading are high. As such, HFTs can trigger periods of market

failure that could not take place when market participants were only fast or possessed

only superior information processing technology. Only LFTs could keep the market

going, yet they have been largely crowded out of the maket for liquidity provision.39

As such, our model is the first to formally capture and analyze this potential systemic

risk HFT activity brings to financial markets.40 Temporary market freezes could arise

with increasing frequency in equilibrium as HFTs gain a larger market share and get

access to more efficient technology. Our framework also allows to verify the effectiveness

of several proposed (or implemented) regulatory measures to manage HFT activity in

practice (such as financial transaction taxes, minimum latency requirements, make-take

fees, and affirmative liquidity provisions).

The selection of the starting point of our investigation (i.e., how the HFT emer-

gence affects liquidity provision by traditional market makers or institutional investors)

is driven by the general concern that HFTs are consistently front-running slower LFTs.

The LFTs are thus forced to also make costly investments to lower their latency and

improve their information processing capacity, or move out of the market for liquidity

provision as evidenced by our model. In a broader perspective, and beyond the specific

scope of our model, in itself this may entail other repercussions for market stability in

39Being non-smart yields LFTs a larger proportion of toxic informed order flow, and being slow makes
them less successful in providing liquidity to incoming non-informed order flow.

40See e.g. Biais and Woolley (2011) and Biais and Foucault (2014) for intuitive assessments of the
risk of crowding out LFTs.
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the short run. In particular, during periods of market stress, long-term institutional

investors typically function as market stabilizers withstanding short-term volatility, and

the business model of traditional market makers allows easier cross-subsidization be-

tween periods of calm and stress. HFTs on the other hand, are reluctant to carry risky

inventory positions for longer than some minutes as they are thinly-capitalized (see Kir-

ilenko et al. (2011) and Biais and Foucault (2014)). Moreover, they have no affirmative

obligation to make markets over time and tend to retract in bad times as evidenced by

the flash crash (CFTC-SEC, 2010).41 Furthermore, in the long run, LFTs might also

experience reduced profitability through other channels, as they are hampered in their

portfolio choice and face more systemic risk in the markets. As such, LFTs may be hin-

dered in their role as long-term risk takers in the mobilization of savings (e.g. pension

funds dealing with the aging of society) and in the financing of the economy.42

41Notably, this is precisely what exacerbated the vicious liquidity spiral during the May 2010 flash
crash. After having swallowed an unusually large initial liquidity shock, HFTs were still lacking sufficient
demand from fundamental buyers or cross-market arbitrageurs, and started rapidly buying and reselling
future contracts to each other. In turn, this created broader contagion effects causing equity markets
to instantly dry up.

More generally, Korajczyk and Murphy (2015) provide empirical evidence that in stressful times
HFTs reduce liquidity provision significantly, while liquidity provision by designated market makers
(i.e., LFTs) remains mostly unchanged.

42See also Biais and Woolley (2011) and Biais and Foucault (2014) for a further outlook.
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Figure 1: Example of an undercutting path in the uninformed setting
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The figure shows an example undercutting path when there is no asymmetric information. The

x-axis shows time elapsed since the first quote has been posted, while the y-axis displays price

ticks. Blue exposures are HFT exposures while red exposures are LFT exposures.
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A APPENDIX - Proofs

Proof of Lemma 1. First we prove P1. Suppose â ≥ p(2). Posting a ≥ â will lead to

no execution and therefore zero payoff. Posting a ∈ [p(1), â) ∩ Q guarantees a positive

payoff as p(1) > µ and π̄ = 0.

Next, we prove P1. Suppose â = p(1). Posting a < p(1) on Q cannot be optimal, as

any quote on Q falling short of p(1) must be lower than µ and would therefore lead to a

loss. Any quote a ≥ p(1) joins the queue and has zero execution probability. Hence the

payoff of any such a quote is zero. Hence, R∗k(p(1)) = p(1) is (weakly) optimal.

Now we derive the expressions for execution probabilities. Assume the posted quote

a = R∗k(â) > p(1). In equilibrium, any liquidity provider arriving to the market will

undercut due to P1. Hence the execution probability is given by the probability that the

liquidity demander arrives before another liquidity supplier. The arrival rate of liquidity

suppliers is given by λ(γm+ n) and is independent of k, because liquidity providers are

atomistic. The arrival rate of liquidity demanders is given by νliq. Applying standard

rules for the calculations with exponential distributions yields (4).

Now assume a = R∗k(â) = p(1), where â > p(1). As it is never optimal for any

liquidity supplier to undercut, execution is guaranteed and hence, Φ = 1.

Q.e.d.

Proof of Proposition 1. From Lemma 1, it follows that undercutting is the only

action undertaken in equilibrium by both ATs and LFTs. Undercutting to any quote

larger than the incoming market order trader’s reservation price pliq is sub-optimal as it

will always generate a zero payoff. Hence, upon observing a quote strictly larger than

pliq upon arrival, the optimal strategy is to undercut to pliq. As the limit order execution

probability Φ is independent of the number of ticks with which the undercutting takes

place, undercutting to a quote lower than pliq is always sub-optimal.

If pliq or a lower quote are observed upon arrival, undercutting by one tick or under-

cutting to p(1) are the only actions that will be undertaken in equilibrium by both ATs

and LFTs. Undercutting by more than one tick to a price which is strictly larger than

p(1) is always sub-optimal as the limit order execution probability Φ is independent of

the number of ticks with which the undercutting takes place.

Next, let us determine the threshold price at which arriving traders prefer to undercut

to p(1) instead of undercutting by one tick.

First, trader k faces the following trade-off. If she quotes the competitive price, she

secures execution in the running iteration and obtains with certainty a profit equal to

p(1) − µ = δ
2
. If instead she undercuts by only one tick to a price p > p(1), her

expected payoff equals Φ (p− µ) as she will be undercut by the subsequently-arriving

liquidity provider. It follows that undercutting by only one tick is the best response if
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Φ (p− µ) ≥ δ
2
, implying that the exact threshold price where this inequality reverses is

at p̃∗ = µ+ δ
2Φ

.

As a final step, we still need to account for the fact that p̃∗ may not be positioned

on the price grid. To do so, denote the greatest integer strictly lower than x by bbxcc.
Then,

p̃∗ =

〈
µ+

δ

2Φ

〉+

= p(1) +

⌊⌊
1− Φ

2Φ

⌋⌋
δ, (33)

where p̃∗ is the smallest price on the grid such that the inequality is satisfied.

Q.e.d.

Proof of Proposition 2. We will now work out the unconditional expected profits in

each of the two parts along the equilibrium path.

Let us start with region UC. To facilitate exposition, let us define the random

variables b as the number of ticks away from pliq on which execution takes place, qt

the number of ticks the best standing quote is away from pliq and tb the time at which

execution takes place. The market-wide expected aggregate profit earned in region UC

is given by

E(ΠUC) =
Z∑
i=0

P (b = i)(pliq − iδ − µ).

The probability of execution i ticks away from pliq can be derived as follows. We have

that

P (b = i) =

∫ ∞
t=0

P (qt = i)P (tb > t)νliqdt. (34)

The probability P (qt = i) is given by a Poisson distribution with parameter λ̄t, while

P (tb > t) = exp(−νliqt). Substituting these distribution functions into (34), we get

P (b = i) =

∫ ∞
t=0

1

i!
(λ̄t)i exp(−λ̄t) exp(−νliqt)λliqdt, (35)

=

∫ ∞
t=0

νliqλ̄
i

(νliq + λ̄)i+1

[
(νliq + λ̄)i+1 1

i!
ti exp(−(νliq + λ̄)t)

]
dt. (36)

The part in square brackets can be recognized as the pdf of a Gamma distribution with

parameters (i+ 1, νliq + λ̄), while all other terms are multiplicative, do not depend on t

and can therefore be put in front of the integration. By definition, a pdf integrates to 1

over its support, such that we have

P (b = i) =
νliqλ̄

i

(νliq + λ̄i+1
. (37)

Let us now continue with the comp region. Let us define the probability of execution in
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the UC region

PUC =
Z∑
i=0

P (b = i). (38)

If execution takes place outside the UC region, it must take place in the comp region

where execution is guaranteed to the first one posting a quote p(1). Hence,

E(Πcomp) = (1− PUC)(p(1)− µ) (39)

trivially follows.

Now we still need to show how expected aggregate profits accrue to LFTs and ATs.

This depends on the expected exposures of both groups. As expected quote life is

independent of trader type, the expected exposure of a group depends on how often it

can be expected to post an undercutting quote relative to the other group. Hence, the

fraction of time that the market is exposed to LFT quotes is given by

fLFT =
n

n+ γm
. (40)

Q.e.d.

Proof of Proposition 3. Define b = m
γ

and substitute into (10) to (15). Applying

the chain rule for differentiation to get the derivatives of the expected revenue densities

(10) and (11) with respect to b and n respectively gives:

∂E (
∑

â ΠLFT (R∗LFT (â)))

∂n
=
∂E (

∑
â ΠAT (R∗LFT (â)))

∂b
=

−(E(ΠUC + Πcomp))

(n+ b)2
+
∂(E(ΠUC + Πcomp))

∂(n+ b)

1

n+ b
. (41)

Hence, marginal expected revenue densities are equal. On the other hand, marginal

expected cost densities are given by CL and CA

γ
, respectively. Hence, given n + b, ex-

pected revenue minus expected costs for ATs always exceeds that for LFTs if CL >
CA

γ
.

Moreover, the partial derivatives of (10) and (11) with respect to n and b are all four

strictly negative. As entry is free, it will take place as long as marginal revenue ex-

ceeds expected costs. Hence we must have for each player type in equilibrium either

marginal costs equals marginal profits or participation is zero. As a result we have that

n = 0,m > 0 if CL >
CA

γ
and n > 0,m = 0 if CL <

CA

γ
.

Q.e.d.

Proof of Proposition 4. Let us define the event B that a specific LFT arrives to an

empty order book, let the event S denote suspicion from the ATs and NS no suspicion

from the ATs. Then Bayes rule gives
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P̂ (ζ = inf |ψLFT ) = P (ζ = inf |B) =
P (B|ζ = inf)

P (B)
, (42)

P (B) = P (B|ζ = inf) + P (B|ζ = liq), (43)

P (B|ζ = inf) = P (B|ζ = inf, S)P (S|ζ = inf) + P (B|ζ = inf,NS)P (NS|ζ = inf),

(44)

P (B|ζ = liq) = P (B|ζ = liq, S)P (S|ζ = liq) + P (B|ζ = liq, NS)P (NS|ζ = liq), (45)

P (S|ζ = inf) =
P (ζ = inf |S)P (S)

P (ζ = inf)
, (46)

P (S|ζ = liq) =
P (ζ = liq|S)P (S)

P (ζ = liq)
. (47)

Moreover, we have that

P (B|ζ = inf, S) = P (B|ζ = liq, S) =
1

n
, P (B|ζ = inf,NS) = P (B|ζ = liq, NS) =

1

n+ γm
,

(48)

P (ζ = inf) = P (S) = π̄, P (ζ = liq) = 1− π̄, (49)

P (NS|ζ = inf) = 1− P (S|ζ = inf), P (NS|ζ = liq) = 1− P (S|ζ = liq), (50)

P (ζ = inf |S) = φ2. (51)

Substituting in, we get

P̂ (ζ = inf |ψLFT ) =
φ2

1
n

+ (1− φ2) 1
n+γm

φ2
1
n

+ (1− φ2) 1
n+γm

+ 1
n
π̄(1− φ2) +

(
1− π̄(1−φ2)

1−π̄

) . (52)

The partial derivatives (where φ2 > π̄) are given by:43

∂P̂ (ζ = inf |ψLFT )

∂m
=

nγ(1− π̄)(φ2 − π̄)

(2n(−1 + π̄) +mγ(−φ2 + π̄(−1 + 2φ2)))2
> 0, (53)

∂P̂ (ζ = inf |ψLFT )

∂γ
=

mn(1− π̄)(φ2 − π̄)

(2n(−1 + π̄) +mγ(−φ2 + π̄(−1 + 2φ2)))2
> 0, (54)

∂P̂ (ζ = inf |ψLFT )

∂φ2

=
mγ(1− π̄)(n+mγπ̄)

(2n(−1 + π̄) +mγ(−φ2 + π̄(−1 + 2φ2)))2
> 0, (55)

∂P̂ (ζ = inf |ψLFT )

∂n
=

−mγ(1− π̄)(φ2 − π̄)

(2n(−1 + π̄) +mγ(−φ2 + π̄(−1 + 2φ2)))2
< 0, (56)

∂P̂ (ζ = inf |ψLFT )

∂π̄
=

−mγ(1− φ2)(n+mγφ2)

(2n(−1 + π̄) +mγ(−φ2 + π̄(−1 + 2φ2)))2
< 0. (57)

43Calculations performed by Mathematica
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If ATs do not employ a differential strategy upon observing an informed trade (i.e. ATs

always or never submit a first quote), LFTs cannot learn anything about the state of

the world from observing an empty book and we have that P (ζ = inf |B) = π̄.

Q.e.d.

Proof of Proposition 5. Combining Proposition 3 with the observation leading to

(??) in section 4.2.1, we have that m > 0, n = 0 if C̃L >
C̃A

γ
and m = 0, n > 0 if C̃L <

C̃A

γ
.

(??) is obtained by applying the same function f(x) = x
1−π̄ + π̄

(1−π̄)(n+γm)
(µinf − pliq) to

both CL and CA. Because f(x) is linear with strictly positive coefficient on the linear

term, f(x) is strictly increasing. Hence, rank ordering of input is preserved. Therefore,

C̃L >
C̃A

γ
iff CL >

CA

γ
and C̃L <

C̃A

γ
iff CL <

CA

γ
.

Q.e.d.

Proof of Proposition 6. Let us assume that (23) is satisfied in equilibrium. In this

setting, ATs always quote in an empty book and hence we resort to the case with speed

only. Due to Proposition 5, liquidity is provided exclusively by the player type with

lowest adjusted cost, i.e. ATs when min
(
C̃A

γ
, C̃L

)
= C̃A

γ
and LFTs otherwise. (26) then

ensures that (23) is satisfied in equilibrium.

Q.e.d.

Proof of Proposition 7. Because gA(·) is strictly decreasing, it equals CA

γ
at only one

point. If at this point marginal expected profit for LFTs is strictly positive, LFTs will

take over the whole market due to the fact that gA(·) and gL(·) are strictly decreasing

in b and n (LFTs can enter, causing ATs to leave, which in turn attracts more LFTs,

etc.).

If entry of ATs is profitable whenever LFT marginal profit equals zero, ATs will

enter at the expense of LFTs. However, because of Proposition 4, (24) will bind. At this

point, AT marginal profit must be strictly positive, while LFT marginal profit equals

zero. Moreover, increasing b would be infeasible, due to the discontinuity in AT marginal

profit. Hence, we must be in (b̄, n̄).

Under the same conditions, but with hA(b̄, n̄) > 0, entry of ATs is also optimal in

(b̄, n̄). As marginal profit for ATs and LFTs is strictly negative in b and n, we must

have that liquidity is exclusively provided by ATs. Because LFTs do not participate and

ATs stay away from an empty book when s = inf , freezes take place. The incidence

rate of s = inf is π̄ due to the unconditionally unbiased nature of the signal. If π̄cM >

φ2(µinf − pliq) as assumed, freezes cost more than is saved by avoiding toxic order-flow.

This is inefficient.

Q.e.d.
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B Internally consistent news announcements

In the dynamic extension of the model, we need to make sure that price movements

are consistent with informed trading. In other words, it is important that prices move

in the direction of the information in the market when the state of nature switches

from inf to liq. However, we want to prevent LFTs from learning from price paths

to keep tractability. To this end, we assume that public information can be released

between iterations. In particular, we assume that information releases always occur if

ζl switches from informed to uninformed, such that the efficient price µ can be updated

to the value µinf from last period. Moreover, we assume that information from either

side of the book is impounded in prices in a similar way such that there is no price

drift up or down.44 In order to have that information releases contain no information

about ζl, certain conditions about the frequencies of public information releases need to

be satisfied. Let us define the event Al as a public information release (announcement)

between iteration l − 1 and l.

Assumption 1 (Announcement uninformativeness) When the state of nature switches

from inf to liq, public information is released (i.e. P (Al|ζl−1 = inf, ζl = liq) = 1).

Moreover, information releases satisfy the following constraint

β(1−π)P (Al|ζl = inf, ζl−1 = inf) + (1−α)(1− π̄)(
1

π̄
− 1)P (Al|ζl = inf, ζl−1 = liq) =

(1− β)π̄ + α(1− π̄)P (Al|ζl−1 = liq, ζl = liq) (58)

Under assumption 1, we show below that public information releases are uninforma-

tive about the state of nature ζl. Note that the assumptions in this paragraph are not

necessary to obtain our main results, but merely to show that the setup of our model is

internally consistent.

In order to have information asymmetry that is consistent with future price move-

ments, we have under assumption 1 that

P (Al|ζl−1 = inf, ζl = liq) = 1. (59)

Moreover, we want the event Al to be uninformative about the state of nature (to

LFTs). This is the case when

44For tractability reasons, we refrain from also explicitly modeling the other side of the book.
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P (ζl = inf |Al) = P (ζl = inf) → (60)

P (Al|ζl = inf)P (ζl = inf)

P (Al)
= P (ζl = inf) → (61)

P (Al|ζl = inf) = P (Al). (62)

The only thing left to do now is to work out this constraint in terms of public news

release probabilities for each type of transition. We can work out P (Al|ζl = inf) first:

P (Al|ζl = inf) = P (Al|ζl = inf, ζl−1 = inf)P (ζl−1 = inf |ζl = inf)+

P (Al|ζl = inf, ζl−1 = liq)P (ζl−1 = liq|ζl = inf). (63)

Applying Bayes rule twice, we have

P (ζl−1 = inf |ζl = inf) =
P (ζl = inf |ζl−1 = inf)P (ζl−1 = inf)

P (ζl = inf)
=
βπ̄

π̄
= β, (64)

where π̄ = 1−α
2−β−α , the long-term (unconditional) steady state probability of being in the

informed state of nature. Similarly, we have

P (ζl−1 = liq|ζl = inf) =
(1− α)(1− π̄)

π̄
. (65)

Substituting these expressions into (63), we get

P (Al|ζl = inf) =

P (Al|ζl = inf, ζl−1 = inf)β + P (Al|ζl = inf, ζl−1 = liq)(1− α)(
1

π̄
− 1). (66)

Similarly, we can work out P (Al) as

P (Al) = P (Al|ζl−1 = inf, ζl = inf)P (ζl−1 = inf, ζl = inf)+

P (Al|ζl−1 = inf, ζl = liq)P (ζl−1 = inf, ζl = liq)+

P (Al|ζl−1 = liq, ζl = inf)P (ζl−1 = liq, ζl = inf)+

P (Al|ζl−1 = liq, ζl = liq)P (ζl−1 = liq, ζl = liq). (67)
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Working out basic statistical identities, we have

P (ζl−1 = inf, ζl = inf) = P (ζl = inf |ζl−1 = inf)P (ζl−1 = inf) = βπ̄, (68)

and similarly

P (ζl−1 = inf, ζl = liq) = (1− β)π̄, (69)

P (ζl−1 = liq, ζl = inf) = (1− α)(1− π̄), (70)

P (ζl−1 = liq, ζl = liq) = α(1− π̄). (71)

Substituting everything into (62) and realizing that probabilities must be contained

in the unit interval, any set of announcement probabilities satisfying the following set

of constraints can be allowed:

β(1−π)P (Al|ζl = inf, ζl−1 = inf) + (1−α)(1− π̄)(
1

π̄
− 1)P (Al|ζl = inf, ζl−1 = liq) =

(1− β)π̄ + α(1− π̄)P (Al|ζl−1 = liq, ζl = liq) (72)

and

P (Al|ζl = inf, ζl−1 = inf) ∈ [0, 1], (73)

P (Al|ζl = inf, ζl−1 = liq) ∈ [0, 1] (74)

P (Al|ζl−1 = liq, ζl = liq) ∈ [0, 1]. (75)
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C Notation Summary

Parameters

Symbol Support Description

Q − price grid

δ (0,∞] tick size

p(i) Q price level on the grid

µ (0,∞] fundamental value conditional on public information only

pliq (µ,∞] reservation price liquidity demanders

µinf (pliq,∞] true value of the asset in the informed state

â Q standing best quote upon arrival

Ck (0,∞] participation costs

cM [0,∞] freeze costs

λ [0,∞] arrival intensity liquidity providers

γ [1,∞] speed advantage of ATs

νinf , νliq [0,∞] arrival intensities for informed and uninformed

liquidity demanders respectively

φ1, φ2 (0.5, 1] accuracy of signals s = liq and s = inf respectively

π̄ [0, 1] (unconditional) probability of ζ = inf state

α, β [0, 1] transition probabilities of staying in the liq and inf states respectively

(dynamic extension only)

States of nature

Ṽ {µinf , µ} Asset payoff

ζ {inf, liq} state of nature/liquidity demander type

s {inf, liq} signal about state of nature

ψk − information set

Indices

k {A,L} liquidity provider type

i {0, ..,∞} ticks

t [0,∞] time

l {1, ..,∞} iteration (i.e. stage game; dynamic extension only)

Decision variables

m,n [0, 1) masses of ATs and LFTs respectively

a Q price quote to be submitted
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